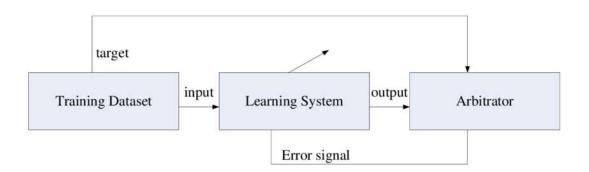

A.I. is ···

- the **simulation of human** intelligence processes by machines.
- intelligence demonstrated by machines
- a field, which combines computer science and robust datasets, to enable **problem-solving**.
- improving enterprise performance and productivity by **automating** processes or tasks that once required human power.
- refers to the simulation of human intelligence in machines that are programmed to think like humans and **mimic their actions**.

Why A.I.?



Machine Learning

• The use and development of computer systems that are able to **learn** and adapt **without** following **explicit instructions**, by using data and/or try-and-error.

Supervised Learning

Supervised Learning Classification

Popular Algorithms

- Support Vector Machines
- K-Nearest Neighbors
- Naïve Bayes
- Decision Trees
- Multi-Layer Perceptron (Vanilla Neural Networks)
- Deep Neural Networks

Examples/ Applications

- Spam/NSFW Filtering
- · Watermark Detection
- Scam/Fraud Detection
- Auto-Labeling (Text, Music, Video, Image,...) for improving search
- Intrusion Detection
- Text (Sentiment Analysis, News Filtering, Hashtag Suggestions, ...)

Supervised Learning Regression

Popular Algorithms

- Linear/Multi-variate/Lasso Regression
- Support Vector Machines
- Decision Trees
- Multi-Layer Perceptron (Vanilla Neural Networks)
- Deep Neural Networks

Examples/ Applications

- KPI prediction
- Price Prediction/Estimation (Gold, Stock, Real-State)
- Age Estimation
- Identification/Verification
- Auto. Scoring (Quality, Perceptibility, Popularity, etc.)

How to Solve a Classification/Regression Problem?

- 1. Make sure your problem is a classification/Regression problem!
- 2. Gather a good standard dataset
- 3. Label/Annotate your data by using experts or accurate people (and sometimes machine!)
- 4. Divide your dataset into Training/Validation/Test sets
- 5. Train different algorithms (models) by *Training set* and tune the models by *Validation set* to get the highest performance from each model
- 6. Use the *Test set* to evaluate the models and select the best trained model
- 7. Deploy the model and use it in your product.
- 8. Get more data and re-train you model during the time.

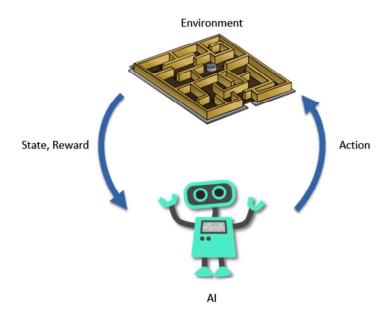
Supervised Learning Challenges

- Bad Datasets
 - Unlabeled data samples
 - Un-balanced datasets
 - Missing Values
 - Outliers
- · Bad Feature Engineering
 - Irrelevant predictors (features)
 - Hard to understand
- Bad Training
 - Over-fitting
 - Under-fitting
 - Wrong model selection
 - Wrong hyper parameters setting

Supervised Learning Evaluation Metrics

• Classification

- Accuracy
- Precision Confusion Matrix
- Recall
- F-measure
- ROC curve

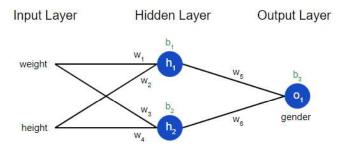

• Regression

- Mean Square Error (MSE)
- Root Mean Square Error (RMSE)
- Mean Absolute Error (MAE)
- Cosine Similarity (for multi-output regressions)
- Error histogram / Regression between real and predicted outputs

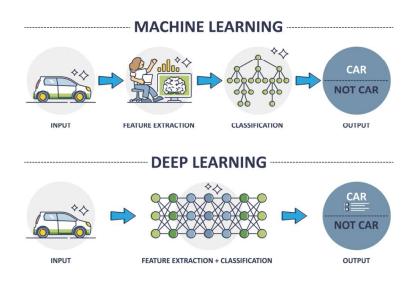
Un-Supervised Learning

- Clustering
 - K-means
 - FCM
 - Density-based
 - Hierarchical
 - SOM
- Feature Extraction/Dimensionality Reduction / Data Compression
 - Auto-Encoders
 - RBMs
 - PCA

Reinforcement Learning


Review

	Supervised	Un-Supervised	Reinforcement	
Needs Data?	YES	YES	NO	
Needs Annotation/Labeling?	YES	NO	N/A	
Needs Feedback/Supervisor?	YES	NO	YES	
Applications:	PredictionDetectionCategorizing	 Finding patterns in data Dim. Reduction Turn unlabeled datasets into groups with similar members 	RoboticVideo GamesImproving Trained Models	


Quiz

Problem		Supervised		R
		Regression	Unsupervised	Reinforcement
Building a model that can play chess				
Build a model that can predict what are you going to type				
Build a model that can predict the number of passengers tomorrow for <i>Snap!</i>				
Build a model that can predict whether a flight passenger will buy the insurance or not				
Build a model that can recommend similar products to a customer				
Build a model that can recommend a product to similar persons				
Build a model to predict the stock market from previous data and then improve the accuracy during the time				

Neural Networks

Deep Learning

- Computer Vision (Image/Video Processing + Machine Learning)
 - Image Classification
 - Object Detection
 - Image Segmentation
 - Object Tracking
 - Face Analysis (Gender, Age, Identity, Pose, Expression, etc.)
 - Image Generation (Deep Fake)
- Popular Models:
 - Convolutional Neural Networks (CNNs)
 - Generative Adversarial Networks (GANs)

- Machine Listening (Audio Engineering + Machine Learning)
 - Speech Recognition (Voice to Text)
 - Music Information Retrieval (MIR)
 - Speech Synthesis (Text to Voice)
 - Speaker/Singer Recognition
 - Speech generation (Deep Face)
- Popular Models:
 - Long short-term Memory (LSTM)
 - Gated Recurrent Unit (GRU)
 - Transformers
 - Generative Adversarial Networks (GANs)

- Natural Language Processing (Text Mining + Machine Learning)
 - Text Classification (Sentiment analysis, Auto tagging, Language Understanding)
 - Text Generation
 - Chat bots
 - Learn-to-rank (recommender systems)
- Popular Models
 - Word Embedding (Word2Vec, GloVe, Bert, etc.)
 - LSTMs, GRUs
 - Transformers
 - Generative Pre-trained Transformers (GPT)

- MLSP (Machine Learning for Signal Processing)
 - Medical diagnosis (ECG, EEG, MRI, CT-scan, etc.)
 - Stock Markets/Crypto currencies
 - Electrical/Control/Power Engineering (Fault detection, uncertainty controlling)
 - Geography (Hyper Spectral Imaging Remote Sensing)
 - Telecommunication/Networking (Traffic prediction, Intrusion detection, Resource Management)

Some Trending Terms

- Explainable A.I. (XAI)
- Multi-Modality
- Federated Learning
- Transfer Learning

A Fun Tool

• https://teachablemachine.withgoogle.com/